32 research outputs found

    Exploring traffic and QoS management mechanisms to support mobile cloud computing using service localisation in heterogeneous environments

    Get PDF
    In recent years, mobile devices have evolved to support an amalgam of multimedia applications and content. However, the small size of these devices poses a limit the amount of local computing resources. The emergence of Cloud technology has set the ground for an era of task offloading for mobile devices and we are now seeing the deployment of applications that make more extensive use of Cloud processing as a means of augmenting the capabilities of mobiles. Mobile Cloud Computing is the term used to describe the convergence of these technologies towards applications and mechanisms that offload tasks from mobile devices to the Cloud. In order for mobile devices to access Cloud resources and successfully offload tasks there, a solution for constant and reliable connectivity is required. The proliferation of wireless technology ensures that networks are available almost everywhere in an urban environment and mobile devices can stay connected to a network at all times. However, user mobility is often the cause of intermittent connectivity that affects the performance of applications and ultimately degrades the user experience. 5th Generation Networks are introducing mechanisms that enable constant and reliable connectivity through seamless handovers between networks and provide the foundation for a tighter coupling between Cloud resources and mobiles. This convergence of technologies creates new challenges in the areas of traffic management and QoS provisioning. The constant connectivity to and reliance of mobile devices on Cloud resources have the potential of creating large traffic flows between networks. Furthermore, depending on the type of application generating the traffic flow, very strict QoS may be required from the networks as suboptimal performance may severely degrade an application’s functionality. In this thesis, I propose a new service delivery framework, centred on the convergence of Mobile Cloud Computing and 5G networks for the purpose of optimising service delivery in a mobile environment. The framework is used as a guideline for identifying different aspects of service delivery in a mobile environment and for providing a path for future research in this field. The focus of the thesis is placed on the service delivery mechanisms that are responsible for optimising the QoS and managing network traffic. I present a solution for managing traffic through dynamic service localisation according to user mobility and device connectivity. I implement a prototype of the solution in a virtualised environment as a proof of concept and demonstrate the functionality and results gathered from experimentation. Finally, I present a new approach to modelling network performance by taking into account user mobility. The model considers the overall performance of a persistent connection as the mobile node switches between different networks. Results from the model can be used to determine which networks will negatively affect application performance and what impact they will have for the duration of the user's movement. The proposed model is evaluated using an analytical approac

    Developing an implementation framework for the future internet using the Y-Comm architecture, SDN and NFV

    Get PDF
    The Future Internet will provide seamless connectivity via heterogeneous networks. The Y-Comm Architecture is a reference model that has been developed to build future mobile systems for heterogeneous environments. However, the emergence of Software Defined Networking and Network Functional Virtualization will allow the implementation of advanced mobile architectures such as Y-Comm to be prototyped and explored in more detail. This paper proposes an implementation model for the Y-Comm architecture based on these mechanisms. A key component is the design of the Core Endpoint which connects various peripheral wireless networks to the core network. This paper also proposes the development of a Network Management Control Protocol which allows the management routines running in the Cloud to control the underlying networking infrastructure. The system being proposed is flexible and modular and will allow current and future wireless technologies to be seamlessly integrated into the overall system

    Exploring a new transport protocol for vehicular networks

    Get PDF
    The Future Internet will be very different from the current Internet. In particular, support for new networks such as vehicular networks, will be a key part of the new environment. Applications running on these networks will require low latency and high bandwidth, which must be provided in a highly mobile environment. The goal of this paper is to look at these issues as they have been addressed in the design and development of the Simple Lightweight Transport Protocol (SLTP) to support vehicular networking. The functions and workings of the protocol are examined in this paper as well as the ecosystem that is needed to provide low latency. A detailed set of preliminary results are presented and compared with a standard TCP implementation. SLTP was also ported to the Roadside Units of a Vehicle Ad-Hoc Network and results are presented for moving data to and from the Roadside Units. This work highlights the need for the Future Internet to place more resources at the edge of the core network to provide support for low latency in vehicular environments

    On the investigation of cloud-based mobile media environments with service-populating and QoS-aware mechanisms

    Get PDF
    Recent advances in mobile devices and network technologies have set new trends in the way we use computers and access networks. Cloud Computing, where processing and storage resources are residing on the network is one of these trends. The other is Mobile Computing, where mobile devices such as smartphones and tablets are believed to replace personal computers by combining network connectivity, mobility, and software functionality. In the future, these devices are expected to seamlessly switch between different network providers using vertical handover mechanisms in order to maintain network connectivity at all times. This will enable mobile devices to access Cloud Services without interruption as users move around. Using current service delivery models, mobile devices moving from one geographical location to another will keep accessing those services from the local Cloud of their previous network, which might lead to moving a large volume of data over the Internet backbone over long distances. This scenario highlights the fact that user mobility will result in more congestion on the Internet. This will degrade the Quality of Service and by extension, the Quality of Experience offered by the services in the Cloud and especially multimedia services that have very tight temporal constraints in terms of bandwidth and jitter. We believe that a different approach is required to manage resources more efficiently, while improving the Quality of Service and Media Service Delivery in which services run on localised public Clouds and are capable of populating other public Clouds in different geographical locations depending on service demands and network status. Using an analytical framework, this paper argues that as the demand for specific services increases in a location, it might be more efficient to move those services closer to that location. This will prevent the Internet backbone from experiencing high traffic loads due to multimedia streams and will offer service pr- viders an automated resource allocation and management mechanism for their services

    A survey of potential architectures for communication in heterogeneous networks

    Get PDF
    An increasingly wireless world will mean that devices with multiple network interfaces will soon become commonplace. Users will expect to be always connected from anywhere and at any time as connections will be switched to available networks using handover techniques. However, different networks have different Qualities-of-Service so a Quality-of-Service Framework is needed to help applications and services deal with this new environment. In addition, since these networks must work together, future mobile systems will have an open, instead of the currently closed, architecture. Therefore new mechanisms will be needed to protect users, servers and network infrastructure. This means that future mobile networks will have to integrate communications, mobility, quality-of service and security. This paper provides an overview of potential architectures for communication in future networks. Our study shows that only a number of these architectures support this integration

    Developing a comprehensive information security framework for mHealth: a detailed analysis

    Get PDF
    It has been clearly shown that mHealth solutions, which is the use of mobile devices and other wireless technology to provide healthcare services, deliver more patient-focused healthcare, and improve the overall efficiency of healthcare systems. In addition, these solutions can potentially reduce the cost of providing healthcare in the context of the increasing demands of the aging populations in advanced economies. These solutions can also play an important part in intelligent environments, facilitating real-time data collection and input to enable various functionalities. However, there are several challenges regarding the development of mHealth solutions: the most important of these being privacy and data security. Furthermore, the use of cloud computing is becoming an option for the healthcare sector to store healthcare data; but storing data in the cloud raises serious concerns. This paper investigates how data are managed both on mHealth devices as well as in the cloud. Firstly, a detailed analysis of the entire mHealth domain is undertaken to determine domain-specific features and a taxonomy for mHealth, from which a set of security requirements are identified in order to develop a new information security framework. It then examines individual information security frameworks for mHealth devices and the cloud, noting similarities and differences. Furthermore, key mechanisms to implement the new framework are discussed and the new framework is then presented. Finally, the paper presents how the new framework could be implemented in order to develop an Advanced Digital Medical Platform

    Exploring intelligent service migration in vehicular networks

    Get PDF
    Mobile edge clouds have great potential to address the challenges in vehicular networks by transferring storage and computing functions to the cloud. This brings many advantages of the cloud closer to the mobile user, by installing small cloud infrastructures at the network edge. However, it is still a challenge to efficiently utilize heterogeneous communication and edge computing architectures. In this paper, we investigate the impact of live service migration within a Vehicular Ad-hoc Network environment by making use of the results collected from a real experimental test-bed. A new proactive service migration model which considers both the mobility of the user and the service migration time for different services is introduced. Results collected from a real experimental test-bed of connected vehicles show that there is a need to explore proactive service migration based on the mobility of users. This can result in better resource usage and better Quality of Service for the mobile user. Additionally, a study on the performance of the transport protocol and its impact in the context of live service migration for highly mobile environments is presented with results in terms of latency, bandwidth, and burst and their potential effect on the time it takes to migrate services

    SecA, a remarkable nanomachine

    Get PDF
    Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data

    Using advanced handover and localization techniques for maintaining quality-of-service of mobile users in heterogeneous cloud-based environment

    No full text
    In order to maintain seamless communication and quality of service (QoS) for mobile applications, a new and flexible mechanisms are needed. The first technique is the use of vertical handover to maintain QoS through multiple interfaces. Modern architectures use handover to move connections to a better network when required. The server localisation is the second facility that can be developed to move services closer to the user as they move around. In this paper, these two options are explored in detail. In addition, a reactive network slicing concept is introduced which is used as the measured service rate in the proposed system. Using this framework, mobile users can make decisions to select whether to stay connected using the current network, do a vertical handover to a neighbouring network or request that the service be migrated closer to the user. An analytical model is presented and a decision table developed to explore these options

    Cloud-based service delivery architecture with service-populating and mobility-aware mechanisms

    No full text
    Advances in Mobile and Cloud technologies have redefined the way we perceive and use computers. Mobile devices now rely on Cloud technology for storage and applications. Furthermore, recent advances in network technology ensure that mobile devices in the future will have high-bandwidth connectivity at all times. This drives the incentive of doing all the processing and storage in the Cloud and using mobile devices to access the services. In this chapter, the authors argue that always-on connectivity along with increased demand of Cloud services will contest the Internet backbone and create problems in the management of Cloud resources. Client mobility is also a factor that should be taken into account when providing Cloud services to mobile devices. The authors therefore propose a new service delivery architecture that takes into account client mobility as well as the distance between clients and services in order to manage Cloud and network resources more efficiently and provide a better Quality of Experience for the user
    corecore